
Eur. Phys. J. B 33, 209–213 (2003)
DOI: 10.1140/epjb/e2003-00158-7 THE EUROPEAN

PHYSICAL JOURNAL B

Scattering of a sound wave by a vibrating surface
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Abstract. We report an experimental study of the scattering of a sound wave of frequency f by a surface
vibrating at frequency F . Both the Doppler shift at the vibrating surface and acoustic nonlinearities in
the bulk of the fluid, generate the frequencies f ± nF (n integer) in the spectrum of the scattered wave.
We show that these two contributions can be separated because they scale differently with respect to the
vibration frequency and to the distance between the vibrating scatterer and the detector. We determine
the parameter ranges in which one or the other mechanism dominates and present quantitative studies of
these two regimes.

PACS. 43.25.+y Nonlinear acoustics – 43.20.Fn Scattering of acoustic waves – 43.58.+z Acoustical mea-
surements and instrumentation

1 Introduction

A problem of interest in the discussion of nonlinear ef-
fects is how the boundary surfaces of the media affect the
results. Generation of longitudinal waves from transverse
ones in solids [1], first to second sound conversion in su-
perfluid helium [2], second harmonic generation in optics
[3], can result from both bulk nonlinearities and boundary
conditions at interfaces. An essential question is thus, how
can one distinguish between bulk and surface nonlineari-
ties.

In particular, this problem arises when an acoustic
wave of frequency f is reflected by a boundary vibrating at
frequency F . The scattered signal being Doppler shifted,
its spectrum involves peaks at frequencies f ±nF (n inte-
ger) [4] . The vibrating surface also emits an acoustic wave
at frequency F that interacts with the high frequency one
f through nonlinear terms in the conservation equations
and in the equation of state. These also generate sum and
difference frequencies [5,6]. Although Doppler shift and
bulk nonlinearities lead to spectra with the same compo-
nents of frequency, the amplitudes of the waves generated
through bulk nonlinearities increase with distance from
the vibrating surface, thus it has been argued that they
give the dominant contribution to the spectrum within a
fraction of a wavelength of the scatterer’s surface. It has
been even claimed that the contribution of the Doppler
effect might be undetectable [7]. This has been the sub-
ject of a strong theoretical controversy [4,7]. In this letter,
we present an experimental study of the spectral charac-
teristics of an acoustic wave scattered by a vibrating pis-
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ton. We show that there exists a wide parameter range in
which the Doppler shift gives the dominant contribution
to the spectrum of the scattered wave. We then study the
cross-over to the bulk nonlinear regime.

2 Doppler shift versus bulk acoustic
nonlinearities

The scattering of a wave by a vibrating surface, ξ =
A sinΩt (Ω = 2πF ), has been widely studied theoreti-
cally, first in the case of electromagnetic waves [8] and
then in acoustics [4]. A simple way to describe this pro-
cess is to consider the Doppler shift of the high frequency
wave scattered by the vibrating surface. We assume that
this wave is emitted by a transducer located at a distance
L from the plate, reflected normally and detected by the
same transducer. Thus the scattered wave measured at
time t, has been generated at time t − τ(t) and reflected
at time t − τ(t)/2. Writing that it propagated at velocity
c gives

τ(t) =
2
c

[
L − ξ

(
t − τ(t)

2

)]
. (1)

The detected wave is thus of the form

ps ∝ exp iω (t − τ(t)) . (2)

If A � L, we have τ(t) ≈ 2L/c. In addition, if the velocity
of the plate is small compared to the sound velocity c,
M ≡ AΩ/c � 1, we can substitute this value of τ in
the vibration amplitude ξ in (2). We get the quasi-static
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approximation, which gives up to a constant phase factor

ps ∝ exp iω
[
t +

2
c
ξ

(
t − L

c

)]

∝ exp i
[
ωt + 2kA sin Ω

(
t − L

c

)]
. (3)

Consequently, we observe that the Doppler effect gen-
erates a phase modulation of scattered wave with a char-
acteristic magnitude ∆ΦD = 2kA where A is the vibration
amplitude and k the wave number of the high frequency
wave. Using

exp i
[
ωt + (2kA) sin Ω

(
t − L

c

)]

= exp(iωt)
+∞∑

n=−∞
Jn(2kA) exp

[
inΩ

(
t − L

c

)]
, (4)

we observe that the amplitude of the peak at pulsation
ω ± nΩ is given by the modulus of the Bessel function of
order n, |Jn(2kA)| which scales like (kA)n for kA small.

Acoustic nonlinearities in the bulk of the fluid also gen-
erate a phase modulation of the high frequency wave [9].
There are two contributions, the nonlinear terms in the
fluid equations and those in the equation of state. In the
case of plane waves their effect can be understood as a
modification of the high frequency wave propagation ve-
locity c by an amount ∆c ∝ VΩ ∝ PΩ/ρc where VΩ (resp.
PΩ) is the typical amplitude of the velocity (resp. the
pressure) modulation related to the low frequency wave,
and ρ is the fluid density. When the two waves are coun-
terpropagating, the nonlinearly generated waves remain
small because of the absence of phase matching. On the
contrary, when the two waves propagate in the same di-
rection, the phase of the nonlinearly generated waves can
remain locked to the ones of the parent waves and the ef-
fect is cumulative. After propagation over a distance L, the
characteristic magnitude ∆ΦNL of the phase modulation
due to bulk nonlinearities is ∆ΦNL ∝ L∆k = Lω∆c/c2 ∝
LωPΩ/ρc3. A detailed calculation in the case of a perfect
gas of adiabatic index γ gives ∆ΦNL = (1+γ)LωPΩ/2ρc3

[9]. For a liquid, one should replace (1+γ)/2 by the acous-
tic nonlinear parameter ε = 1 + ρ(∂c/∂ρ)S/2c [10]. The
first term on the right hand side is due to the nonlinearity
of the conservation equations whereas the second traces
back to the equation of state.

Thus, both the Doppler effect and bulk nonlinearities
generate a phase modulation of the high frequency wave
by the low frequency one. However, the shifted peak ampli-
tudes scale differently with the vibration parameters: they
depend on the vibration amplitude A when the Doppler
effect is dominant and on the low frequency pressure PΩ

when bulk nonlinearities are dominant. We emphasize that
despite these different scalings, the Doppler effect cannot
be singled out just by decreasing the amplitude of the
waves. It results from boundary conditions at the mov-
ing interface which are nonlinear as can be easily seen by
taking the Taylor expansion of the fields at the interface
in the vicinity of ξ = 0. The successive powers of the

vibration amplitude are then involved in the boundary
conditions, thus generating the frequencies f ± nF . Non-
linearities arising from boundary conditions at free inter-
faces are very common in capillary-gravity waves, crystal
growth and flame fronts.

The importance of the Doppler shift related to the ef-
fect of bulk nonlinearities is thus measured by the param-
eter

Y =
∆ΦD

∆ΦNL
=

2ρc2A

εLPΩ
· (5)

In the case of plane propagating waves (PΩ = ρcVΩ ∝
ΩA), we have Y ∝ Λ/L where Λ is the wavelength of the
low frequency wave.

3 Experiments in water

Experiments have been performed both in air and in wa-
ter, in different geometrical configurations. The set-up in
air has been used to determine the dominant mechanism
that generates sum and difference frequencies, the Doppler
effect versus bulk acoustic nonlinearities, whereas the one
in water allowed a quantitative study of the character-
istics of the wave scattered from a vibrating piston when
bulk nonlinearities are negligible compared to the Doppler
effect.

Experiments in water have been performed in a tank
of dimensions 72 × 68 × 55 cm, thermally regulated at
temperature T = 15 ± 0.2 ◦C. Its lower boundary is cov-
ered with a layer of plastic foam (Plastiform’s) in order to
minimize the effect of multiple reflections. A square pis-
ton made of PMMA, of dimensions 15×15 cm and 10 mm
thick, located beneath the upper surface of the water, is
driven sinusoidally by an electromagnetic vibration exciter
(BK4808). Its motion is described by ξ = A sinΩt and is
recorded using an accelerometer (BK 4393V) fixed on the
piston. The range of vibration parameters is 3 × 10−10 <
A < 10−3 m, 30 < F < 6000 Hz. A dual transducer (Pana-
metrics D706), 13 mm in diameter, located at a distance
L = 18 cm below the piston, generates an incident wave
at frequency f = 2.25 MHz (ω = 2πf) and records the
wave scattered by the vibrating piston. Its power spec-
trum, computed by a spectrum analyzer (Agilent 3589A),
is displayed in Figure 1 for F = 30 Hz. We observe that
the number and the amplitude of the peaks at frequen-
cies f ± nF for n ≥ 1 (n integer) first increases when
the amplitude A is increased from zero (Fig. 1a, b). Fig-
ure 2 shows that the normalized amplitudes Pω+Ω/Pω do
not depend on the vibration frequency F in the range
30 < F < 3000 Hz. A slight dependence on F begins to
be observed only for F = 6000 Hz. Thus for F < 3000 Hz,
the Doppler effect is dominant and bulk nonlinearities can
be neglected. For kA small, the amplitude of the peak at
frequency f ± nF (n ≥ 1) increases like (kA)n, as shown
for n = 1 and n = 2. On the contrary, the amplitude of the
component at frequency f of the scattered wave decreases
and we observe that it almost vanishes for 2kA ≈ 2.3
(see Fig. 1c). It increases when A is increased further
above 2kA ≈ 2.3, then decreases and vanishes again for
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Fig. 1. Power spectra of the wave scattered by the vibrating
plate at frequency F = 30 Hz as a function of the dimensionless
vibration amplitude 2kA (k is the wave number of the incident
high frequency wave, f). The x-axis represents the Doppler
shift, such that the origin corresponds to f = 2.25 MHz.

Fig. 2. Normalized amplitudes Pω+nΩ/Pω of the peaks at fre-
quencies f +nF (n = 1, 2) as a function of the vibration ampli-
tude A: F = 30 Hz (•), 60 Hz (�), 120 Hz (�), 180 Hz (�), 700
Hz (�), 3000 Hz (×), 6000 Hz (+). Continuous lines display
the slopes 1 and 2.

Fig. 3. Normalized amplitudes Pω+Ω/Pω0 of the peaks at fre-
quencies f +nF (n = 0, 1, 2, 3) as a function of the dimension-
less vibration amplitude 2kA: n = 0 (�), n = 1 (◦), n = 2
(♦), n = 3 (�). Lines display the moduli of Bessel functions of
order n. Pω0 is the amplitude of the reflected wave when the
piston is at rest.

2kA ≈ 5.4. The same process occurs roughly periodically
for the amplitude of each peak f ± nF , as displayed in
Figure 3 for n = 0, 1, 2, 3. This behavior can be under-
stood from equation (4). We observe in Figure 3 that the
agreement is rather good.

4 Experiments in air

Experiments in air are performed in a 1 m long tube made
of PMMA, 56.5 mm in inner diameter. A cylindrical piston
made of aluminium, 55.8 mm in diameter, is located at
one end of the tube, x = 0 say, and is driven sinusoidally
with amplitude A and frequency F as for the experiments
in water. A transducer ITC 9072, 16 mm in diameter,
located at position x = L, 0.3 < L < 1 m, generates a
wave at frequency f = 150 kHz, incident on the vibrating
piston. The scattered wave is recorded by another ITC
9072 transducer, also located at x = L, 3 mm apart from
the first one. We also measure at the same location x = L,
the low frequency pressure PΩ generated by the vibrating
piston, using a PCB 103A pressure transducer with a flat
response in the range 1–5000 Hz.

The power spectrum of the scattered wave is computed
with a spectrum analyzer (Agilent 3589A). As for exper-
iments in water, it displays peaks at frequencies f ± nF
(n integer). The amplitude of the pressure at pulsation
ω + Ω, Pω+Ω, normalized by that of the wave scattered
at pulsation ω, Pω, is displayed in Figure 4. Figure 4a
shows that at low enough frequency of the vibrating pis-
ton, 30 < F < 964 Hz, Pω+Ω/Pω does not depend on Ω
and increases linearly with the vibration amplitude A as
for experiments in water. At higher vibration frequency,
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Fig. 4. Normalized amplitudes Pω+Ω/Pω as a function of the
vibration amplitude A (a) and as a function of the low fre-
quency pressure PΩ (b): F = 30 Hz (◦), 60 Hz (♦), 120 Hz
(�), 964 Hz (�), 1200 Hz (+), 3000 Hz (×), 3500 Hz (•), 4000
Hz (�), 4500 Hz (�) (Solid lines of slope one.)

1.2 < F < 4.5 kHz, we observe a clear departure from
the low frequency curve. On the contrary, when Pω+Ω/Pω

is plotted as a function of the low frequency pressure PΩ

generated by the vibrating piston, we observe in Figure 4b
that the data collapse on a single curve at high F and de-
part from this curve at low F . We thus observe that bulk
nonlinearities become dominant at high frequency because
the two waves interact on a larger number of low frequency
wavelengths.

Another way to study the cross-over between the two
regimes is to vary the distance L and frequency F for
constant A (A = 0.22 µm), i.e. keeping the contribu-
tion of the Doppler effect constant. The measurements
are displayed in Figure 5 as a function of L/Λ. For L/Λ
small enough, we observe that Pω+Ω/Pω is constant as
it should be when the Doppler effect is dominant. When
L/Λ is large, Pω+Ω/Pω increases with L/Λ on average,
but also displays strong local maxima. We have checked

Fig. 5. Normalized amplitudes Pω+Ω/Pω as a function of L/Λ
for A = 0.22 µm: L = 20 cm (♦), 30 cm (�), 50 cm (�), 90 cm
(•). The inset displays the dependence of the same quantity on
the dimensionless ratio Y = 2ρc2A/εLPΩ .

that they correspond to acoustic resonances of the tube
(L/Λ ≈ n/2) for which PΩ shows a maximum. According
to equation (5) this strongly enhances the contribution of
bulk nonlinearities. In order to take into account the con-
tribution of PΩ , we have plotted in the inset of Figure 5
Pω+Ω/Pω as a function of the dimensionless parameter Y
(see Eq. (5)). For Y large, Pω+Ω/Pω does not depend on
Y . When Λ is decreased for fixed L, such that Y becomes
smaller that one, the cooperative effect of bulk nonlinear-
ities becomes dominant and Pω+Ω/Pω increases like Y −1.
Note also that it is apparent in Figure 5 that Pω+Ω/Pω

first decreases when bulk nonlinearities become compara-
ble to the contribution of the Doppler effect, i.e. when
L/Λ is increased such that Y ≈ 1. This clearly shows that
these two contributions are not in phase as can be infered
from the fact that the amplitude of the Doppler shifted
wave scales with the vibration amplitude whereas that of
the nonlinearly shifted wave depends on the low frequency
velocity field. The slight decrease of the amplitude ratio
thus results from interferences between the waves gener-
ated by Doppler shift and bulk nonlinearities. It may also
involve a contribution of a cavity effect in our geometry.

Finally, it is interesting to compare the transition val-
ues of Y observed with air and water. In the water ex-
periments, Y has been varied in the range 0.11 < Y < 22
corresponding to 30 < F < 6000 Hz. Y ≈ 1 corresponds to
F ≈ 700 Hz whereas, as shown in Section 3, the Doppler
shift is still dominant at much higher frequencies. This
shows that the criterion Y ≈ 1 for the transition should
be taken with care. It is roughly correct when the waves
are one dimensional as for the experiments in air that
have been performed in a tube. The experiments in water
have been performed in non confined geometry and both
the low and high frequency waves are slightly divergent.
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This decreases the strength of bulk nonlinearities and the
Doppler shift thus remains dominant at lower Y i.e. higher
frequencies.

5 Conclusion

We have thus clearly identified two scattering regimes: one
for which the only contribution to the sum and difference
frequencies comes from the Doppler shift by the vibrating
piston, bulk nonlinearities being negligible, and another
one for which the frequency shifted wave is dominantly
generated by bulk acoustic nonlinearities. Both effects are
intrinsically nonlinear and thus neither of them can be
made dominant by varying only the vibration amplitude.
However, they scale differently with vibration frequency
and with distance between the vibrating scatterer and the
detector. It is thus possible to single out one of them but it
is important to check carefully that the other one is negli-
gible when one uses this scattering technique for nonintru-
sive measurements of vibration or for the determination
of the nonlinear acoustic parameter of a fluid.
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